

Intelligent Differential Pressure Transmitter

Product Overview

Intelligent differential pressure transmitter is a new type of instrument researched and developed by our company according to international advanced tech-nology combined with many domestic technologies. This instrument adopts micro-processing technology for temperature characteristic and non-linear compensation, thus having greatly enhanced the measurement accuracy of the instrument, improved the temperature characteristic and expanded the turndown ratio. Besides, intelligent functions can be added, which further meets the requirements of high reliability and high stability of the instrument at the industrial sites. The adoption of digital technology in the capacitive pressure / differential pressure transducer not only ensures high reliability of the instrument and other superior performance, but also realizes the remote digital connection between the intelligent instrument and the control room to ensure rapid and reliable communica-tion. The control room can remotely enquire into or make a real-time configuration of the transducer.

Working Principle

The intelligent PCB integrates converting circuit and processing circuit into one circuit using advanced IC and SMT technology. The micro-processor of the transducer controls the A/ D and D / A converting module and performs digital communication and self-diagnosis function. When working, the micro-processor controls the A / D converting module for sampling conversion of the analog signals from the sensitive elements and converts them into digital signal so that the micro-processor can process it, including signal linearization, temperature compensation, engineering unit conversion etc. The micro-processor can also complete sensor characterization, measuring range, damping time, and other functions. E2PROM stores all the configurations and tuning parameters. Because the memory is a non-volatile memory (NVM), the parameters stored will not be lost in case of power failure. The PC working station or personal digital assistant (PDA) is used to configure and test the parameters or complete communication with any upper system supporting HART protocol. HART protocol uses industrial standard BELL202 frequency shift keying (FSK) technology to realize communication with the 1200HZ2200HZ digital signals overlapped on 4 ~ 20mA signal. The frequency signal during communication will not disturb the process signal. This intelligent capacitive transducer can perform online real-time self-diagnosis. The transducer has a presetting value of 3.9mA before delivery if it has 21mA or 3.9mA output.

Product Features

- High accuracy
- Good stability
- Small size, light weight, solid and vibration resistant
- Good compatibility, compatible with products of other companies in line with HART protocol
- Support the user to use handheld unit 272 / 275 or PC for software debugging and for real-time configuration of the instrument during its running.
- Can conduct intelligent linearization for pressure signal to ensure higher accuracy of measurement.

Tuckson Data Sheet TK3051 Page 1 of 3

Intelligent Differential Pressure Transmitter

Functional Indicators

Measured medium	Liquid, gas, or vapor		
Power supply	1245V, 24V DC generally		
Indicating gauge	LCD gauge		
Explosion-proof	a. Flameproof type d ${\mathbb I}$ BT4, b. Intrinsically safe type ia ${\mathbb I}$ CT6		
Measuring range & zero point	Externally and continuously adjustable		
	The lower and upper limit of the measuring range shall not exceed the range limit after positive and negative immigration.		
Positive and negative immigration	Max. positive immigration: 500% of the min. measuring range		
	Max. negative immigration: 600% of the min. measuring range		
	The range of operating temperature for the amplifier: -29 \sim +93 $^{\circ}\mathrm{C}$		
-	The measuring element filled with silicon oil : -40 $\sim +104\mathrm{C}$		
Temperature range	Flange-type transducer filled with high-temperature silicon oil: +15 \sim +315 °C; that filled with general silicon oil: -40 \sim +150 °C		
Volume intake capacity	<0.16cm3		
Damping (step response)	Continuously adjustable generally between 0.2s \sim 1.67s when filled with silicon oil.		
Starting time	2s, preheating is unnecessary		
Accuracy	± 0.1% FS; ± 0.25% FS; ± 0.5% FS		
Dead zone	None (≤ 0.1%)		
Stability	Not exceeding the absolute value of the basic error of the max. range within 6 months		
Influence of temperature	Zero error≤±0.1%/55°C, total error ≤±0. 2%/55°C		
Influence of static pressure	Min. ± 0 . 2%FS, Max. ± 1 %FS		
Influence of vibration	In any axial direction, the error is \pm 0.05% / g of the upper limit of the measuring range when the vibration frequency is 200Hz.		
Influence of power supply	Less than 0.005% / V of the output range		
Influence of load	The load has no influence on it if the power supply is stable		
Influence of installing position	A maximum of 0.24KPa zero error can be generated, but it can be corrected, without influence on the measuring range		
	Isolating diaphragm: 316LSST, Hastelloy alloy C, monel, or tantalum.		
	Gas exhaust / liquid discharge valve: 316LSST, Hastelloy alloy C, monel		
	Flange and joint: Electroplated carbon steel, 316LSST, Hastelloy alloy C, or monel		
Structural materials	O – ring contacting medium: NBR, fluo rubber		
	Liquid filled: Silicon oil or inertia oil		
	Bolt: Electroplated carbon steel		
	Enclosure of electronic parts: Low-copper aluminum alloy		
Pressure guide connecting part	connecting screw hole on the pressurized vessel /chamber :1/ $4\sim 18$ NPT,connecting screw hole on the pressure leading joint :1/ $2\sim 14$ NPT.		
Connecting hole of the signal wire	G1/2		
Weight: Approx	3.5kg (excluding accessories)		
Standard accessories	Flanged joints, gas exhaust valves liquid discharge valves and one copy of instruction manual have been provided for all the types upon delivery		

Tuckson Data Sheet TK3051 Page 2 of 3

Intelligent Differential Pressure Transmitter

Required

Туре		
Micro differential pressure transducer		
Differential pressure transducer		
High static pressure differential pressure transducer		
Absolute pressure transducer		
Pressure transducer		
Flange type liquid level transducer		
Remote differential pressure/pressure transducer		
Functions		
4~20mA		
$4{\sim}20$ Ma HART protocol digital communication		
$4{\sim}20$ mA adjustable intelligent condition		
Static Pressure MPa		
1		
4		
10		
10		

Code	Measuring range	
2	$0-0.125\sim1.5$ KPa	
3	0-1.3~7.5 KPa	
4	$0-6.2\sim37.4$ KPa	
5	$0-31\sim186.8 \text{ KPa}$	
6	0-117~690 KPa	
7	0-345~2068 KPa	
8	0−1170~6890 KPa	
9	0-3450~20680 KPa	
0	0-6890~41370 KPa	

Code	Structural material			
	Flange/joint	Liquid discharge/ gas exhaust valve	Diaphragm	
22	316 SST	316 SST	316 SST	
23	316 SST	316 SST	Hastelloy C	
24	316 SST	316 SST	Monel	
25	316 SST	316 SST	Tantalum	
56	Hastelloy C	Hastelloy C	Hastelloy C	

Additional/Random

Code	Additional functions	
M1	Linear indicator (0 \sim 100% scale)	
M2	Square root indicator (0 \sim 10 scale)	
M4	$3\frac{1}{2}$ -digit LCD indicator (0 \sim 100% linearity)	
B1	Bent stand for pipe installation (pipe outside diameter Φ 50 \sim 60)	
B2	Bent stand for plate installation	
В3	Flat stand for pipe installation (pipe outside diameter Φ 50 \sim 60)	
D1	Gas exhaust and liquid discharge valve for the upper part of the flange side	
D2	Gas exhaust and liquid discharge valve for the lower part of the flange side	
J	T-shaped joint, M20*1.5 male thread	
М	"Waist-shaped" joint, NPT½" taper pipe thread	
C12	NPT1/2" pressure guide transition joint and rear welding pressure guide pipe	
D	Flameproof type: explosion-proof rating all BTS	
I	Intrinsically safe type: explosion-proof rating iall CT6	

eg. TK3051-DP-6-S-25-B-C12

Quick Selection Table

Ordering instructions

- 1) If there is positive and negative migration, the migration value must be indicated;
- 2) If the differential pressure transducer needs to be equipped with three-valve manifold, throttling device, this shall be specified separately;
- 3) For the purchase of a remote transducer, it shall be determined based on the needs as per the different remote flange selection table;
- 4) If the remote transducer needs to be used in a vacuum and high temperature situation, it shall be specially indicated in the order;
- 5) The material of contacting medium O-ring includes nitrile rubber and fluorine rubber.

Specifications subject to change without notice. All rights reserved. All corporate names and trademarks stated herein are the property of their respective companies.

Tuckson Instruments

No. 10128, Shennan Blvd., Nanshan District, Shenzhen, 518052, China

Tuckson Data Sheet TK3051 Page 3 of 3